

ECS Security Architecture Paul W. Fingerman

pfingerm@eos.hitc.com

ECS Release A SDPS/CSMS Critical Design Review 17 August 1995

Roadmap

Why Security?

Security Threats and Countermeasures

General ECS Approach to Security

Using DCE/OODCE for ECS Security

Gateway Architecture

Summary

Why Security?

To maintain three characteristics

- Integrity of ECS (e.g., data products, production schedules)
- Availability of ECS services
- Confidentiality of certain data (e.g., user request logs)

Security Threats

Intentional Acts

- Unauthorized alteration
 - Malicious insertion
- Unauthorized use
- Unauthorized disclosure
- Sabotage, external
- Sabotage, internal
- Industrial espionage

Modes of Attack

- Impersonation
 - Hijacking (devices, sessions, authenticators)
 - IP spoofing
- Denial of service

Accidents

- Programming error
- User error
- Inadvertent disclosure
- Software malfunction

Security Countermeasures

Combination	of physical	security,	technical	security,	and administ	rative
security		_		_		

- Physical Barriers or Operational Procedures
 - Access to devices
 - Network access
- Administrative Barriers
 - Software quality controls
 - Management of physical and technical barriers
 - Audits and alerts

Security Countermeasures (Cont)

	Subsystem				
Form of Security	ISS CSS		MSS	Application	
Routing Control					
Address Filtering	$\sqrt{}$		$\sqrt{}$		
Dual Homing	$\sqrt{}$,		,	
Firewalls	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
Authentication/Authorization Exchange					
DCE		$\sqrt{}$	V	V	
Raw Kerberos		√	V	V	
Other (weak)		√	√	V	
Access Control		1	1		
DCE ACL Mgr		V	V	-1	
App. Rules Gateway Rules		1	V	V	
		V	V	V	
Data Integrity Encrypted Checksums	2/	V		V	
	V	V		V	
Data Privacy		,			
DCE Encryption		$\sqrt{}$			
Administrative Procedures					
Audit Trails			$\sqrt{}$		
Logoff/Timeout			$\sqrt{}$		
[DAAC Autonomy]		$\sqrt{}$	$\sqrt{}$		
Physical Measures					
Facility Access	$\sqrt{}$,	,		
Distinct Servers for BBS	$\sqrt{}$	$\sqrt{}$	√ ,		
Replication	,	$\sqrt{}$	√ ,		
ISOLans	$\sqrt{}$,	√ ,		
[ISOCells]		√			

General ECS Security Approach

Use OSF/DCE & OODCE as the core for information security for ECS

- Inside the ECS DAAC
- Internal clients at Release A
- External clients at Releases B and beyond

For external ECS interfaces and legacy systems (V0, TSDIS) that will not have DCE/OODCE

- Attempt, in so far as possible, to be policy-neutral or policy-flexible
- A security gateway has been added to the architecture
 - Kerberos will be supported as an alternative

General ECS Security Approach (Cont)

DCE/OODCE Security Capabilities

- Authentication
 - Verifying the identity of the principal
 - Establishing affinity to a group/organization
- Privilege Attribute Certificate (PAC)
 - Trusted mechanism for conveying client authorization data to authenticated servers
- Access Control List (ACL)
 - List of access control entries that protects an object
- ACL Manager type
 - Creates and manages ACL databases
 - Defines access control permissions
 - Creates and associates ACLs to objects
 - Supports standard interfaces for external systems
- Authorization using Access Control Lists (ACLs)
 - Checking the privileges of a principal using PAC (Privilege Attribute Certificate)

Using DCE Cells To Provide Additional Security

- DCE provides "cells"
 - Can be used to provide security
 - One cell per DAAC
 - One (or more) ISO cell containing gateways for external/guest users
 - Users in one cell could access services in another by cross-cell authentication
- Release A uses a single-cell architecture
 - OSF/DCE 1.0.3 currently available from vendors does not support all requirements for Release A
 - OODCE currently does not provide cross-cell authorization
- Will transition to multi-cell architecture for Release B

Using Multiple DCE Cells To Provide Additional Security

DCE Single-Cell Architecture for ECS Security at Release A

Generic Gateway Architecture

Gateway Components

- Communications Gateway
 - Performs transport layer conversion (TCP sockets to OODCEbased distributed objects)
- Security Gateway
 - Performs security protocol conversion (e.g. Kerberos-authenticated to DCE-secured RPCs, V0 authenticated to DCE)
 - Enforces security barrier
 Authorization constraints (per policy)
- Application Gateway
 - Parses and interprets incoming requests
 - Converts application layer protocol, e.g., Object Description Language (ODL)-to-Distributed Object Framework (DOF)

Bulk data transfers bypass gateway after authentication

Generic Gateway Architecture (Cont)

Kerberos Gateway Architecture Example

Summary

Most external clients will not use DCE

Architecture now provides for Security Gateway

DCE provides internal security solution for ECS

- Single-cell architecture for Release A
- Transition to multi-cell architecture by Release B

We have an "Enterprise-wide, integrated security concept, design, and baseline implementation plan" that

- Provides common, flexible security structures
- Promotes consistent placement of security functions & services
- Allows for a variety of security policies at external interfaces